Inhomogeneity beyond the perturbation theory in cesmaiagy, i.e. beyond the cosmological principle

Peter Sundell
University of Turku
Turku Center for Quantum Physics

The cosmological principle is assumed to apply in scales larger than superclusters

- ~ 100 Mpc or
- $\sim 300 \, \text{Mly}$ or
- $\sim 3 \times 10^{21} \text{ km}$

The cosmological principle

=> FLRW metric

So discarding the cosmological principle

- => metric more complex than the FLRW metric
- => more complex equations

Why on Earth would we do this?

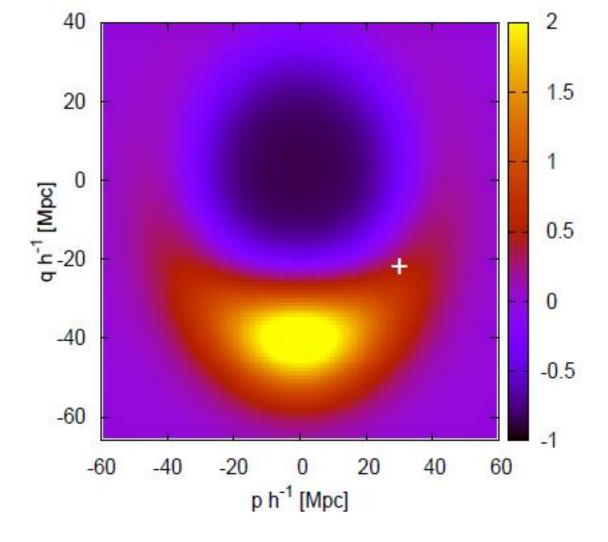
The accuracy of the observations continuously increases - we should test our assumptions rather than trust them blindly

Cepheid variables: H₀=73.8±2.4 km/s/Mpc CMB: $H_0 = 67.74 \pm 0.46 \text{ km/s/Mpc}$

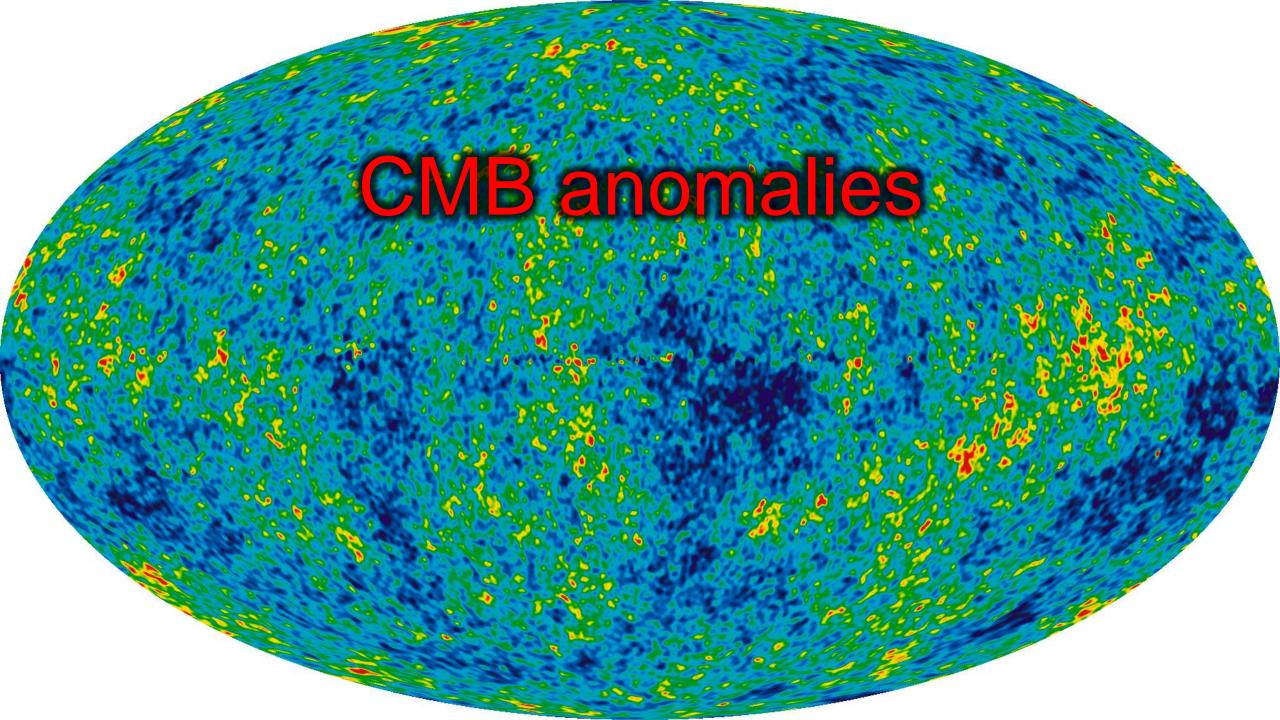
Cepheid variables: H₀=73.8±2.4 km/s/Mpc

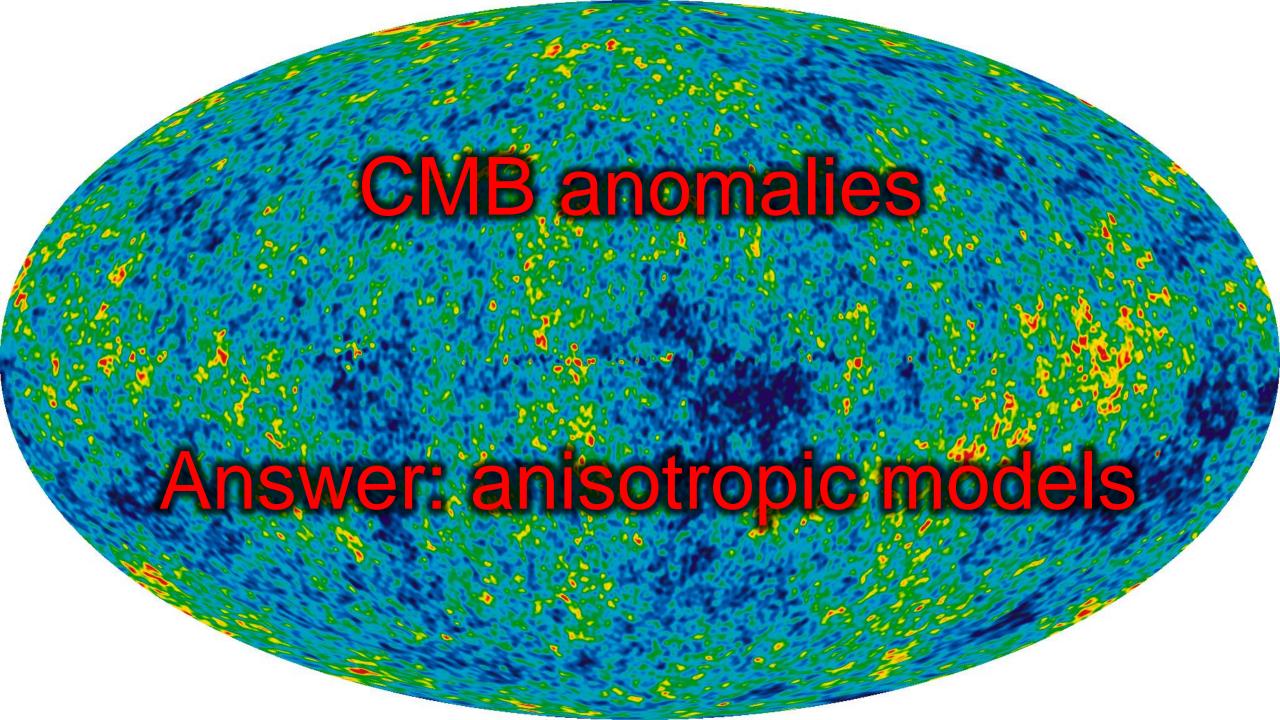
CMB: $H_0 = 67.74 \pm 0.46 \text{ km/s/Mpc}$

Answer: a huge void (larger than superclusters)


COMPOSITE sample: Local Group moves at ~350 km/s w.r.t. CMB frame

CMB: Local Group moves at ~620 km/s w.r.t. CMB frame


COMPOSITE sample: Local Group moves at ~350 km/s w.r.t. CMB frame


CMB: Local Group moves at ~620 km/s wir.t. CMB frame

Answer: Local Void and Great Attractor

K. Bolejko, M. A. Nazer, D. L. Wiltshire, JCAP06(2016)035

Tilted perfect fluid Bianchi VII_h can explain some of the anomalies...

Tilted perfect fluid Bianchi VII_h can explain some of the anomalies...

...but only if it is inconsistent with other cosmological observations.

T. R. Jaffe, S. Hervik, A. J. Banday, and K. M. Górski, Astrophys.J.644:701-708,2006

What if...

Tilted perfect fluid Bianchi VII_h can explain some of the anomalies...

P. Sundell and T. Koivisto, PRD 92, 123529 (2015)

Bianchi VII_h

$$\Sigma'_{+} = (q - 2)\Sigma_{+} + 3(\Sigma_{12}^{2} + \Sigma_{13}^{2}) - 2N^{2} + \frac{\gamma\Omega}{2G_{+}}(-2v_{1}^{2} + v_{2}^{2} + v_{3}^{2})$$

$$\Sigma'_{-} = (q - 2 - 2\sqrt{3}\Sigma_{23}\lambda)\Sigma_{-} + \sqrt{3}(\Sigma_{12}^{2} - \Sigma_{13}^{2}) + 2AN + \frac{\sqrt{3}\gamma\Omega}{2G_{+}}(v_{2}^{2} - v_{3}^{2})$$

$$\Sigma'_{12} = (q - 2 - 3\Sigma_{+} - \sqrt{3}\Sigma_{-})\Sigma_{12} - \sqrt{3}(\Sigma_{23} + \Sigma_{-}\lambda)\Sigma_{13} + \frac{\sqrt{3}\gamma\Omega}{G_{+}}v_{1}v_{2}$$

$$\Sigma'_{13} = (q - 2 - 3\Sigma_{+} + \sqrt{3}\Sigma_{-})\Sigma_{13} - \sqrt{3}(\Sigma_{23} - \Sigma_{-}\lambda)\Sigma_{12} + \frac{\sqrt{3}\gamma\Omega}{G_{+}}v_{1}v_{3}$$

$$\Sigma'_{23} = (q - 2)\Sigma_{23} - 2\sqrt{3}N^{2}\lambda + 2\sqrt{3}\lambda\Sigma_{-}^{2} + 2\sqrt{3}\Sigma_{12}\Sigma_{13} + \frac{\sqrt{3}\gamma\Omega}{G_{+}}v_{2}v_{3}$$

$$N' = (q + 2\Sigma_{+} + 2\sqrt{3}\Sigma_{23}\lambda)N$$

$$\lambda' = 2\sqrt{3}\Sigma_{23}(1 - \lambda^{2})$$

$$A' = (q + 2\Sigma_{+})A.$$

$$\begin{array}{lll} \Omega' & = & \frac{\Omega}{G_{+}} \Big\{ 2q - (3\gamma - 2) + 2\gamma A v_{1} + \left[2q(\gamma - 1) - (2 - \gamma) - \gamma \mathcal{S} \right] V^{2} \Big\} \\ v'_{1} & = & \left(T + 2\Sigma_{+} \right) v_{1} - 2\sqrt{3}\Sigma_{13}v_{3} - 2\sqrt{3}\Sigma_{12}v_{2} - A \left(v_{2}^{2} + v_{3}^{2} \right) - \sqrt{3}N \left(v_{2}^{2} - v_{3}^{2} \right) \\ v'_{2} & = & \left(T - \Sigma_{+} - \sqrt{3}\Sigma_{-} \right) v_{2} - \sqrt{3} \left(\Sigma_{23} + \Sigma_{-}\lambda \right) v_{3} + \sqrt{3}\lambda N v_{1}v_{3} + \left(A + \sqrt{3}N \right) v_{1}v_{2} \\ v'_{3} & = & \left(T - \Sigma_{+} + \sqrt{3}\Sigma_{-} \right) v_{3} - \sqrt{3} \left(\Sigma_{23} - \Sigma_{-}\lambda \right) v_{2} - \sqrt{3}\lambda N v_{1}v_{2} + \left(A - \sqrt{3}N \right) v_{1}v_{3} \\ V' & = & \frac{V \left(1 - V^{2} \right)}{1 - (\gamma - 1)V^{2}} \left[(3\gamma - 4) - 2(\gamma - 1)Av_{1} - \mathcal{S} \right], \end{array}$$

$$\begin{array}{rcl} q & = & 2\Sigma^2 + \frac{1}{2}\frac{(3\gamma-2) + (2-\gamma)V^2}{1+(\gamma-1)V^2}\Omega \\ \\ \Sigma^2 & = & \Sigma_+^2 + \Sigma_-^2 + \Sigma_{12}^2 + \Sigma_{13}^2 + \Sigma_{23}^2 \\ \\ \mathcal{S} & = & \Sigma_{ab}c^ac^b, \quad c^ac_a = 1, \quad v^a = Vc^a, \\ \\ V^2 & = & v_1^2 + v_2^2 + v_3^2, \\ \\ T & = & \frac{\left[(3\gamma-4) - 2(\gamma-1)Av_1\right](1-V^2) + (2-\gamma)V^2\mathcal{S}}{1-(\gamma-1)V^2} \\ \\ G_+ & = & 1 + (\gamma-1)V^2. \end{array}$$

$$\begin{array}{rcl} 1 & = & \Sigma^2 + A^2 + N^2 + \Omega \\ 0 & = & 2\Sigma_+ A + 2\Sigma_- N + \frac{\gamma \Omega v_1}{G_+} \\ \\ 0 & = & - \left[\Sigma_{12} (N + \sqrt{3}A) + \Sigma_{13} \lambda N \right] + \frac{\gamma \Omega v_2}{G_+} \\ \\ 0 & = & \left[\Sigma_{13} (N - \sqrt{3}A) + \Sigma_{12} \lambda N \right] + \frac{\gamma \Omega v_3}{G_+} \\ \\ 0 & = & A^2 + 3h \left(1 - \lambda^2 \right) N^2. \end{array}$$

Summary

The impact of inhomogeneities beyond the perturbation theory in cosmology are poorly understood

Imparticularly now, the era of precision cosmology offers an opportunity to truly probe this.

